Local Probabilities for Random Walks Conditioned to Stay Positive

نویسنده

  • VLADIMIR A. VATUTIN
چکیده

Let S0 = 0, {Sn, n ≥ 1} be a random walk generated by a sequence of i.i.d. random variables X1, X2, ... and let τ = min{n ≥ 1 : Sn ≤ 0} and τ = min{n ≥ 1 : Sn > 0}. Assuming that the distribution of X1 belongs to the domain of attraction of an α-stable law we study the asymptotic behavior, as n → ∞, of the local probabilities P(τ = n) and the conditional local probabilities P(Sn ∈ [x, x+∆)|τ > n) for fixed ∆ and x = x(n) ∈ (0,∞) .

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Invariance Principle for Random Walk Bridges Conditioned to Stay Positive

We prove an invariance principle for the bridge of a random walk conditioned to stay positive, when the random walk is in the domain of attraction of a stable law, both in the discrete and in the absolutely continuous setting. This includes as a special case the convergence under diffusive rescaling of random walk excursions toward the normalized Brownian excursion, for zero mean, finite varian...

متن کامل

Upper and Lower Space-time Envelopes for Oscillating Random Walks Conditioned to Stay Positive

We provide integral tests for functions to be upper and lower space time envelopes for random walks conditioned to stay positive. As a result we deduce a `Hartman-Winter' Law of the Iterated Logarithm for random walks conditioned to stay positive under a third moment assumption. We also show that under a second moment assumption the conditioned random walk grows faster than n 1=2 (log n) ?(1+")...

متن کامل

Local probabilities for random walks with negative drift conditioned to stay nonnegative∗

Let {Sn, n ≥ 0} with S0 = 0 be a random walk with negative drift and let τx = min {k > 0 : Sk < −x} , x ≥ 0. Assuming that the distribution of the i.i.d. increments of the random walk is absolutely continuous with subexponential density we describe the asymptotic behavior, as n→∞, of the probabilities P (τx = n) and P(Sn ∈ [y, y+ ∆), τx > n) for fixed x and various ranges of y. The case of latt...

متن کامل

Random Walks in Cones

We study the asymptotic behaviour of a multidimensional random walk in a general cone. We find the tail asymptotics for the exit time and prove integral and local limit theorems for a random walk conditioned to stay in a cone. The main step in the proof consists in constructing a positive harmonic function for our random walk under minimal moment restrictions on the increments. For the proof of...

متن کامل

Law of the iterated logarithm for oscillating random walks conditioned to stay non-negative

We show that under a 3+ δ moment condition (where δ > 0) there exists a ‘Hartman-Winter’ Law of the Iterated Logarithm for random walks conditioned to stay non-negative. We also show that under a second moment assumption the conditioned random walk eventually grows faster than n (logn) for any ε > 0 and yet slower than n (logn) . The results are proved using three key facts about conditioned ra...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008